欢迎来到山村网

Python装饰器怎么运用

2019-03-02 12:22:01浏览:697 来源:山村网   
核心摘要:  这篇文章主要介绍了更为深入的Python的装饰器的运用,Python的装饰器是Python学习进阶当中的重要知识点,需要的朋友可以参考下

  这篇文章主要介绍了更为深入的Python的装饰器的运用,Python的装饰器是Python学习进阶当中的重要知识点,需要的朋友可以参考下

  装饰器在 python 中用的相当广泛,如果你用过 python 的一些 web 框架,那么一定对其中的 “ route() 装饰器” 不陌生,今天咱们再看一个具体的案例。

  咱们来模拟一个场景,需要你去抓去一个页面,然后这个页面有好多url也要分别去抓取,而进入这些子url后,还有数据要抓取。简单点,我们就按照三层来看,那我们的代码就是如下:

  ?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 def func_top(url): data_dict= {} #在页面上获取到子url sub_urls = xxxx data_list = [] for it in sub_urls: data_list.append(func_sub(it)) data_dict['data'] = data_list return data_dict def func_sub(url): data_dict= {} #在页面上获取到子url bottom_urls = xxxx data_list = [] for it in bottom_urls: data_list.append(func_bottom(it)) data_dict['data'] = data_list return data_dict def func_bottom(url): #获取数据 data = xxxx return data

  func_top是上层页面的处理函数,func_sub是子页面的处理函数,func_bottom是最深层页面的处理函数,func_top会在取到子页面url后遍历调用func_sub,func_sub也是同样。

  如果正常情况下,这样确实已经满足需求了,但是偏偏这个你要抓取的网站可能极不稳定,经常链接不上,导致数据拿不到。

  于是这个时候你有两个选择:

  1.遇到错误就停止,之后重新从断掉的位置开始重新跑

  2.遇到错误继续,但是要在之后重新跑一遍,这个时候已经有的数据不希望再去网站拉一次,而只去拉没有取到的数据

  对第一种方案基本无法实现,因为如果别人网站的url调整顺序,那么你记录的位置就无效了。那么只有第二种方案,说白了,就是要把已经拿到的数据cache下来,等需要的时候,直接从cache里面取。

  OK,目标已经有了,怎么实现呢?

  如果是在C++中的,这是个很麻烦的事情,而且写出来的代码必定丑陋无比,然而庆幸的是,我们用的是python,而python对函数有装饰器。

  所以实现方案也就有了:

  定义一个装饰器,如果之前取到数据,就直接取cache的数据;如果之前没有取到,那么就从网站拉取,并且存入cache中.

  代码如下:

  ?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 import os import hashlib def deco_args_recent_cache(category='dumps'): ''' 装饰器,返回最新cache的数据 ''' def deco_recent_cache(func): def func_wrapper(*args, **kargs): sig = _mk_cache_sig(*args, **kargs) data = _get_recent_cache(category, func.__name__, sig) if data is not None: return data data = func(*args, **kargs) if data is not None: _set_recent_cache(category, func.__name__, sig, data) return data return func_wrapper return deco_recent_cache def _mk_cache_sig(*args, **kargs): ''' 通过传入参数,生成唯一标识 ''' src_data = repr(args) + repr(kargs) m = hashlib.md5(src_data) sig = m.hexdigest() return sig def _get_recent_cache(category, func_name, sig): full_file_path = '%s/%s/%s' % (category, func_name, sig) if os.path.isfile(full_file_path): return eval(file(full_file_path,'r').read()) else: return None def _set_recent_cache(category, func_name, sig, data): full_dir_path = '%s/%s' % (category, func_name) if not os.path.isdir(full_dir_path): os.makedirs(full_dir_path) full_file_path = '%s/%s/%s' % (category, func_name, sig) f = file(full_file_path, 'w+') f.write(repr(data)) f.close()

  然后,我们只需要在每个func_top,func_sub,func_bottom都加上deco_args_recent_cache这个装饰器即可~~

  搞定!这样做最大的好处在于,因为top,sub,bottom,每一层都会dump数据,所以比如某个sub层数据dump之后,是根本不会走到他所对应的bottom层的,减少了大量的开销!

  OK,就这样~ 人生苦短,我用python!

(责任编辑:豆豆)
下一篇:

python递归计算N!的方法

上一篇:

Python封装shell命令实例分析

  • 信息二维码

    手机看新闻

  • 分享到
打赏
免责声明
• 
本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们 xfptx@outlook.com