欢迎来到山村网

Ruby实现的最短编辑距离计算方法

2019-03-02 13:13:47浏览:528 来源:山村网   
核心摘要:  这篇文章主要介绍了Ruby实现的最短编辑距离计算方法,本文直接给出实现代码,需要的朋友可以参考下  利用动态规划算法,实现

  这篇文章主要介绍了Ruby实现的最短编辑距离计算方法,本文直接给出实现代码,需要的朋友可以参考下

  利用动态规划算法,实现最短编辑距离的计算。

   代码如下:

  #encoding: utf-8

  #author: xu jin

  #date: Nov 12, 2012

  #EditDistance

  #to find the minimum cost by using EditDistance algorithm

  #example output:

  # "Please input a string: "

  # exponential

  # "Please input the other string: "

  # polynomial

  # "The expected cost is 6"

  # The result is :

  # ["e", "x", "p", "o", "n", "e", "n", "-", "t", "i", "a", "l"]

  # ["-", "-", "p", "o", "l", "y", "n", "o", "m", "i", "a", "l"]

  p "Please input a string: "

  x = gets.chop.chars.map{|c| c}

  p "Please input the other string: "

  y = gets.chop.chars.map{|c| c}

  x.unshift(" ")

  y.unshift(" ")

  e = Array.new(x.size){Array.new(y.size)}

  flag = Array.new(x.size){Array.new(y.size)}

  DEL, INS, CHA, FIT = (1..4).to_a #deleat, insert, change, and fit

  def edit_distance(x, y, e, flag)

  (0..x.length - 1).each{|i| e[i][0] = i}

  (0..y.length - 1).each{|j| e[0][j] = j}

  diff = Array.new(x.size){Array.new(y.size)}

  for i in(1..x.length - 1) do

  for j in(1..y.length - 1) do

  diff[i][j] = (x[i] == y[j])? 0: 1

  e[i][j] = [e[i-1][j] + 1, e[i][j - 1] + 1, e[i-1][j - 1] + diff[i][j]].min

  if e[i][j] == e[i-1][j] + 1

  flag[i][j] = DEL

  elsif e[i][j] == e[i-1][j - 1] + 1

  flag[i][j] = CHA

  elsif e[i][j] == e[i][j - 1] + 1

  flag[i][j] = INS

  else flag[i][j] = FIT

  end

  end

  end

  end

  out_x, out_y = [], []

  def solution_structure(x, y, flag, i, j, out_x, out_y)

  case flag[i][j]

  when FIT

  out_x.unshift(x[i])

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

  when DEL

  out_x.unshift(x[i])

  out_y.unshift('-')

  solution_structure(x, y, flag, i - 1, j, out_x, out_y)

  when INS

  out_x.unshift('-')

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i, j - 1, out_x, out_y)

  when CHA

  out_x.unshift(x[i])

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

  end

  #if flag[i][j] == nil ,go here

  return if i == 0 && j == 0

  if j == 0

  out_y.unshift('-')

  out_x.unshift(x[i])

  solution_structure(x, y, flag, i - 1, j, out_x, out_y)

  elsif i == 0

  out_x.unshift('-')

  out_y.unshift(y[j])

  solution_structure(x, y, flag, i, j - 1, out_x, out_y)

  end

  end

  edit_distance(x, y, e, flag)

  p "The expected edit distance is #{e[x.length - 1][y.length - 1]}"

  solution_structure(x, y, flag, x.length - 1, y.length - 1, out_x, out_y)

  puts "The result is : n #{out_x}n #{out_y}"

(责任编辑:豆豆)
下一篇:

Ruby实现的最长公共子序列算法

上一篇:

Ruby实现的最优二叉查找树算法

  • 信息二维码

    手机看新闻

  • 分享到
打赏
免责声明
• 
本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们 xfptx@outlook.com